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A computerized model has been developed for analyzing the temperature distribution
of a two-dimensional body which is located at or near the soil surface and is partially
exposed to solar radiation. The bady may have one or more interior cavities containing
air or another fluid. The methodology which evolved is also applicable to a general class
of thermal analyses involving a body surrounded by a semi-infinite medium exposed to
surface radiation energy. The theoretical analysis, numerical procedure, and a sample case

are discussed,

. Introduction

The problem of determining the temperature and heat flux
of bodies which are exposed to ambient environmental condi-
tions and have portions lying below the soil surface occurs in a
wide variety of applications. Since determining a closed-form
analytical solution is difficult and may only be done to a first-
order accuracy, the development of a numerical finite-difference
model was necessary to determine the temperature distribu-
tion of bodies which fall into this class of problems,

The initial study objective was to develop a thermal model
of a concrete cable conduit, which is partially built below the
surface of the soil, and has an interior cavity. The conduit is
subject to solar radiation (insolation) only on its above-ground
surface. As the numerical solution was being developed, its
usefulness was extended to enable the analysis of a body ina
semi-infinite medium having a more general configuration

containing one or more cavities, with or without the external
surfaces exposed to insolation.

Examples of such general configurations include: a solar
pond, an object floating or submerged in a body of water, a
microwave antenna pedestal foundation, a covered excava-
tion for cable conduits, an underground tunnel, or a building
without exterior glazing.

The heat transfer formulation is presented in Section II,
and the numerical procedure in Section III. The finite differ
ence solution employs the implicit alternating-direction
method which is an effective compromise between compu-
tational accuracy and speed. This method avoids the stringent
step-size requirement of the explicit finite difference method
and the computational complexity of the two-dimensional
implicit method.
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Il. Thermal Analysis

A. Formulation of Finite Difference Equations

The governing energy balance equation in this two-
dimensional thermal analysis is the nonsteady heat conduction
equation, which is:

where
¢ p(X,Y) = the local specific heat

p(X,Y) = the local density

T(X,Y,t) = temperature
t = time
k(X,Y) = thermal conductivity

Q(X,Y ) = heat gain (or loss) per unit volume from sources
other than conduction, such as internal gerera-
tion or surface radiation,

In this model, Q consists of surface radiation heat transfer and
solar irradiation on the surface,

For a iwo-dimensional rectangular network of thermal
nodes, as shown in Fig. 1, Eq. (1) expressed in the implicit,
backward-difference form becomes
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at node point (i,7), where the thermal conductivity k(3 7) is
considered uniform and constant with temperature within the
differential element surrounding (7, ), and Az is the time step.
Note that (7,7) denote position in the X- and Y-directions,
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respectively, and T represents the unknown temperatures at
time (¢ + Af).

By analogy to an electrical circuit, the thermal energy
balance is thought of in terms of heat flows or “currents” into
an element centered about the node point (Z,7) with “thermal
resistances” connecting all neighboring nodes. Then Eq. (2)
becomes:
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where
C(i,j) = the thermal capacity of the cell

q(i,j) = the rate of heat gain or loss to the cell from
other sources

R(i,/) = typical thermal resistance between node
(i-1,7) and node (i, f)

V(i,7) = volume of the cell with unit depth
AX(i,7) = X-dimension of the cell
AY(4,7) = Y-dimension of the cell

Note that for the two-dimensional case, the depth (Z-dimension)
of the cell is taken to be unity, giving
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In dealing with interfaces between different media the fol-
lowing cases are considered for the computation of thermal
resistance:

(a) For two adjacent cells having different conductivities,

the resistance in the X-direction between node (i- 1,7)
and node (7,7) is:

R(
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This relationship applies, for example, to the resistance
between nodes (4, 1) and (5, 1) in Fig. 1.

(b) For the case where convection occurs at the boundary
between two cells, the resistance between nodes (7 - 1, /)
and (7, j) becomes:
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where A(i- 1,7) is the convective heat transfer coefficient
between the (i~ 1,7) node and the boundary between the
cells. Note that Eqs. (4) and (5) are only valid for an inter-
face that is located halfway between the adjacent nodes
along the perpendicular direction.

The general form of the thermal resistance equation com-
bining Egs. (4) and (5) for convection and different material
conductivities at thermal interfaces is: .
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Appropriate values of thermal conductivity and heat transfer
coefficients should be set to match the conditions at each
node. “Infinity” values can be used for & or 4 to selectively
reduce appropriate terms to zero in Eq. (6). For instance, if
there is convection between the (i -~ 1,7) node and the inter-
cell boundary, then k(i - 1,7) should be set to “infinity.”

B. Radiation Exchange

The sky-to-surface radiation heat transfer rate per unit area
is expressed as:

Q, =oFe[(T

sky

)= 78] )

sky
where

o = Stefan-Boltzmann constant = 5.6697 X 10™8 W/m?
K4
€ = e(X,Y) = effective emissivity of the surface thatis

exposed to the environment; appropriate values are
discussed in Section IV

1t

Tsk y

T, = surface temperature

the clear sky temperature

F = view factor

The sky temperature is assumed as 0.914 I, where T, =
ambient air temperature at the surface.

Equation (7) was applied to flat, horizontal surfaces (where
F=1). Other configurations require the determination of
radiation shape factor F. The model developed in this report
calculates sky-to-surface radiant exchange only for horizontal
surfaces.

The rate of solar radiation per unit area absorbed by the
surface is represented by the relation:

Q, = al, (8
where
Q, = solar radiation intensity absorbed by a hori-
zontal surface
a{X, X) = average effective solar radiation absorptance of
the exposed surface
I_ = incident solar radiation

Thus the net heat gain or loss from other nearby sourcés,
q(i, j) of Eq. (3), combines Eqgs. (7) and (8) and is expressed
as:

q(,7) = AX(J) Qg G.1)+ 0,0 )] 9

for two-dimensional surface cells with unit depth exposed to
the external environment. For all interior cells, g(Z, /) = 0.

Il. Numerical Procedure

The finite difference formulation given by Eq. (3) provides
a set of IV simultaneous linear, algebraic equations for /V inte-
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rior node points in which the unknowns are values of the
updated temperature T”,

In some applications, a special one-dimensional version of
Eq. (3) needs to be considered. The equation set in this case
can be written in matrix form, and the coefficient matrix
becomes tridiagonal. A recursive analytical method is available
to solve this tridiagonal system. The following discussion refers
to the case which consists of a cable conduit structure buried
in soil with the top surface exposed to the environment. More
design details are given in the sample case in Section IV,

A. One-Dimensional Analysis

In order to provide a boundary condition for the two-
dimensional case, the one-dimensional solution is applied to a
vertical section of soil which is sufficiently distant from the
cable conduit structure so that conduction in the horizontal
direction is negligible. The resulting temperature profiles may
then be taken as time-dependent boundary conditions for the
appropriate boundary of the two-dimensional case.

The one-dimensional form of Eq. (3) is:
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which may be expressed as:
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The coefficients of T'(j- 1), T'(/), and T'(j + 1) designates
a(j), b(j), and ¢(j) respectively form a tridiagonal matrix
with diagonal vectors 4, b, and ¢, where
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The right-hand side of Eq. (11) is a known quantlty and is
designated as the vector d where:
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The recursion solution (Ref. 2) is of the form:

T'G) = 9 SR TUHY = N LN,
(12)
T'(N) = ¥(N)
where
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() 50) j =23 ,N (14)
B(1) = b(1) (node 1 is the surface node) (15)
_4a)
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By this approach, the problems of accumulation of round-
off error or iterative convergence which are typical with other
methods of matrix equation solution are eliminated.

In applying Egs. (12-16), the initial and boundary condi-
tions may be introduced by specifying an initial temperature
at each node, at time (+ = 0) and boundary temperatures
known as a function of time at nodes j = Q and j =N+ 1,
which represent the ambient air and a “constant” deep earth
location, respectively. For this analysis, the ambient air tem-
perature, T'(7,0), as a function of time of day was approxi-
mated as a sinusoidal function having a given average, am-
plitude, and phase. These given quantitites were determined
by curve-fitting to local recorded temperature data for the
site being modelled. The one-dimensional analysis was taken
to a depth such that the temperature at the bottom node,

= N + 1, was essentially constant on both a diurnal and
annual basis. Surface effects typically penetrate soil to a
depth of about 20 meters throughout the time span of the
annual cycle. A separate computer program has been written
to perform this one-dimensional analysis.

Since modelling soil temperatures is a cyclic problem, the
one-dimensional model has to be run for each day of the year
in succession, for about five annual cycles to remove the
effects of initial temperature conditions.

B. Two-Dimensional Numerical Procedure

When the two-dimensional form of Eq. (3) is considered,
the coefficient matrix is found to no longer be tridiagonal,




and the recursive solution cannot be used to solve the system
of equations. However, the implicit alternating-direction
method again allows use of the tridiagonal recursion solution
and avoids the difficulty of solving the matrix equation by
other methods. The implicit alternating-direction method

uses two different equations in turn over successive time-steps,
each of duration A¢/2. The first equation is implicit only in
the X-direction between times ¢ and (¢ + Az/2) and the second
equation in the Y-direction between times (¢ + A#/2) and
(¢ + At) as follows:
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where T is temperature at time f, 7% is temperature at time
(t + At/2), T' is temperature at time (¢ + A?). The right-hand
sides of Eqs. (17) and (18) are known quantities and the tem-
peratures on the left-hand sides are the unknowns. By using
tridiagonal matrix techniques, Eq. (17) is solved for the inter-
mediate values 7%, which are then used in Eq. (18) to similarly
solve for T" at the end of the time interval At.

The boundary conditions are prescribed along each of the
four boundaries as follows:

(1) The top boundary condition is the temperature of am-
bient air above the soil surface as a function of time.
The air temperature is determined as previously de-
scribed for the one-dimensional case.

(2) The right-hand boundary is the temperature profile of
homogenous soil as a function of time. The results of
the one-dimensional analysis are used for this boundary
condition.

‘(3) The left-hand boundary is the vertical line of symmetry
of the structure. A symmetric boundary condition im-
plies thermal gradients of zero in the normal direction
to the boundary.

(4) The bottom boundary condition is a prescribed tem-
perature which is constant along the bottom row of

nodes, but can vary with time. The value is taken from
the corresponding node on the right-hand boundary at
each time step. This boundary must be located at a suf-
ficient depth so that it can be assumed unaffected by
the thermal influence of the structure. A trial-and-error
approach may be necessary here to avoid unacceptably
large nodal networks.

Although the boundary conditions have been included in the
computer model in the form described, they can be modified
to fit another problem with little difficulty.

IV. Sample Case

The sample case configuration consisted of a hypothetical
concrete trench designed to house communication cables
which require a thermally stable environment. The trench,
shown in cross-section in Fig. 2, is covered by steel plates
which are coated with a highly reflective paint and lined with
styrofoam on the inside. Ambient conditions at the Goldstone
Deep Space Communications Complex were used for this case.

A. One-Dimensional Analysis

The incident solar radiation 7, is computed by a subroutine,
SOLAR, which uses the ASHRAE formulation described in
Ref. 1 to compute direct and diffuse sky components. Input
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parameters to this subroutine include site latitude, day of the
year, and angle of the surface with respect to the horizon (zero
in this model). Diffuse sky radiation and direct solar radiation
are the only components which are included in computing 7.
Solar radiation reflected from nearby surroundings can be
determined by the SOLAR subroutine, but is not used in this
model,

The input conditions for the one-dimensional analysis were:
latitude = 34°N, effective surface absorptivity & = 0.4, surface
emissivity € = 0.45, time step = 1 hour, initial temperature =
20.6°C, soil density p = 2.05 g/em3, soil specific heat = 1.84
J/g-k, soil conductivity k= 9.5 X 10~3 W/cm-K, surface con-
vection coefficient h = 2.27 X 10~3 W/cm?2-K; for ambient air
temperature: annual average = 18.9°C, amplitude of annual
temperature wave = 11.4°C, daily amplitude = 12.2°C, and the
constant soil temperature at a depth of 17 m was taken to be
20.6°C.

No cloud cover factors were used, and no direct means was
included to take into account the precipitation-evaporation
cycle which causes heat loss at the soil surface. Thus an “effec-
tive” absorptivity was defined which accounts for these
factors. A typical set of calculated temperature profiles is
shown in Fig. 3, indicating conditions at four different times
on a particular day. The left-most point on the curves is the
ambient air temperature. Note that the effect of diurnal fluc-
tuation in ambient temperature is damped to nearly zero at a
depth of about 0.5 m below the surface. The remainder of the
profile is characterized by annual temperature cycle effects.
The validity of the model result is confirmed by the fact that
the average temperature profile for the entire year was effec-
tively uniform and equal to the constant soil temperature of
20.6°C, and the behavior of the solution in terms of time lag
and damping of temperature amplitude as a function of depth
is analogous to published analytical solutions.

B. Two-Dimensional Analysis

The additional input conditions for the two-dimensional
analysis consisted of handbook values for thermal properties

of the trench materials, absorptivity of the cover plate = 0.1,
and emissivity of the cover plate = 0.12. The analysis was done
for the 170th day of the year. The model was cycled for three
24-hour periods to overcome the effect of initial conditions
(all the columns of nodes were initially set equal to the right-
hand-side boundary condition). Figure 4 shows the nodal net-
work configuration which was input to the computer model.

Results are shown at times 0100 and 1200 PST in Table 1.
Ten nodes were used in the vertical direction and eight in the
horizontal. Note that the temperatures in row 9 are nearly
uniform, showing that the assumption of uniform temperature
along the bottom boundary (row 10) is valid. Also, tempera-
tures in the horizontal direction in columns 5-8 are nearly
uniform, showing that the assumption of one-dimensional heat
transfer for the right-hand boundary is valid.

V. Discussion

The modelling procedure outlined in this report is applica-
ble to a general class of problems and offers several advantages
over using large general-purpose thermal analysis computer
programs. Among these advantages are the compact size of the
software, the economy of operation of the software, and the
simplicity of applying the modelling procedure. However,
there are some restrictions inherent in the model as it pres-
ently exists: (1) the thermal node mesh must be rectangular,
(2) the left-hand boundary must be a line of symmetry,
(3) radiant heat exchange inside the cavity is neglected, and
(4) no cloud cover factors are included in the solar model.

All of these restrictions may be overcome without great
difficulty by additional development of the modelling soft-
ware, This thermal model will become an increasingly general
analytical tool when these additional capabilities are im-
plemented.
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Table 1. Soil temperatures for Day 170 at two representative times

(Two-dimensional temperature profiles, °C)

Time = 0100
: Horizontal node
Vertical node 1 2 3 4 5 6 7 8
1 25.63 25.63 25.63 25.63 25.63 25.63 25.63 25.63
2 27.03 2442 27.03 26.71 26.22 26.30 26.30 26.88
3 30.60 26.33 30.60 31.57 31.71 31.78 31.77 31.61
4 30.07 27.04 30.07 29.76 29.91 29.98 30.00 29.83
5 27.25 26.40 27.25 27.20 27.28 27.31 27.30 27.13
6 25.09 24.10 25.09 25.08 25.09 25.09 25.07 24.88
7 23.51 22.54 23.51 23.57 23.59 23.59 23.57 23.40
8 22.79 22.28 22.79 22.81 22.82 22.82 22.80 22.65
9 21.87 21.75 21.87 21.88 21.88 21.88 21.86 21.70
10 20.74 20.74 20.74 20.74 20.74 20.74 20.74 20.74
Time = 1200
. Horizontal node
Vertical node 1 2 3 4 5 6 7 8
1 28.80 28.80 28.80 28.80 28.80 28.80 28.80 28.80
2 30.55 32.79 30.55 37.20 37.48 37.42 37.43 36.79
3 27.28 30.44 27.28 28.90 29.41 29.42 29.44 29.59
4 27.51 28.10 27.51 28.54 2891 28.98 28.98 28.92
5 27.12 25.67 27.12 27.24 27.31 27.35 27.33 27.17
6 25.12 23.58 25.12 25.12 25.13 25.13 25.10 24.93
7 23.52 22.45 23.52 23.60 23.63 23.63 23.60 23.44
8 22.81 22.22 22.81 22.84 22.86 22.86 22.83 22.69
9 21.89 2173 21.89 21.90 21.91 21.92 21.88 21.74
10 20.78 20.78 20.78 20.78 20.78 20.78 20.78 20.78
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Fig. 2. Cable trench configuration
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Fig. 3. One-dimensional soil temperature profiles, Day 170
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Fig. 4. Nodal representation of cable trench and surrounding soil
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